84 research outputs found

    Assessment of protein set coherence using functional annotations

    Get PDF
    12 pages, 5 figures. -- PMID: 18937846 [PubMed].-- PMCID: PMC2588600.-- Additional information available: File 1: Coherence score and significance measures of random sets.- File 2: Functional analysis of 'Module 39' obtained by Pu et al. [37] using various approaches.[Background] Analysis of large-scale experimental datasets frequently produces one or more sets of proteins that are subsequently mined for functional interpretation and validation. To this end, a number of computational methods have been devised that rely on the analysis of functional annotations. Although current methods provide valuable information (e.g. significantly enriched annotations, pairwise functional similarities), they do not specifically measure the degree of homogeneity of a protein set.[Results] In this work we present a method that scores the degree of functional homogeneity, or coherence, of a set of proteins on the basis of the global similarity of their functional annotations. The method uses statistical hypothesis testing to assess the significance of the set in the context of the functional space of a reference set. As such, it can be used as a first step in the validation of sets expected to be homogeneous prior to further functional interpretation.[Conclusions] We evaluate our method by analysing known biologically relevant sets as well as random ones. The known relevant sets comprise macromolecular complexes, cellular components and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent. Finally, we illustrate the usefulness of our approach for validating ‘functional modules’ obtained from computational analysis of protein-protein interaction networks.Matlab code and supplementary data are available at: http://www.cnb.csic.es/~monica/coherence/This work has been partially funded by the Spanish grants BIO2007-67150-C03-02, S-Gen- 0166/2006, CYTED-505PI0058, TIN2005-5619, PR27/05-13964-BSCH. APM acknowledges the support of the Spanish Ramón y Cajal program.Peer reviewe

    SENT: semantic features in text

    Get PDF
    We present SENT (semantic features in text), a functional interpretation tool based on literature analysis. SENT uses Non-negative Matrix Factorization to identify topics in the scientific articles related to a collection of genes or their products, and use them to group and summarize these genes. In addition, the application allows users to rank and explore the articles that best relate to the topics found, helping put the analysis results into context. This approach is useful as an exploratory step in the workflow of interpreting and understanding experimental data, shedding some light into the complex underlying biological mechanisms. This tool provides a user-friendly interface via a web site, and a programmatic access via a SOAP web server. SENT is freely accessible at http://sent.dacya.ucm.es

    GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists

    Get PDF
    We present GENECODIS, a web-based tool that integrates different sources of information to search for annotations that frequently co-occur in a set of genes and rank them by statistical significance. The analysis of concurrent annotations provides significant information for the biologic interpretation of high-throughput experiments and may outperform the results of standard methods for the functional analysis of gene lists. GENECODIS is publicly available at

    Discovering semantic features in the literature: a foundation for building functional associations

    Get PDF
    BACKGROUND: Experimental techniques such as DNA microarray, serial analysis of gene expression (SAGE) and mass spectrometry proteomics, among others, are generating large amounts of data related to genes and proteins at different levels. As in any other experimental approach, it is necessary to analyze these data in the context of previously known information about the biological entities under study. The literature is a particularly valuable source of information for experiment validation and interpretation. Therefore, the development of automated text mining tools to assist in such interpretation is one of the main challenges in current bioinformatics research. RESULTS: We present a method to create literature profiles for large sets of genes or proteins based on common semantic features extracted from a corpus of relevant documents. These profiles can be used to establish pair-wise similarities among genes, utilized in gene/protein classification or can be even combined with experimental measurements. Semantic features can be used by researchers to facilitate the understanding of the commonalities indicated by experimental results. Our approach is based on non-negative matrix factorization (NMF), a machine-learning algorithm for data analysis, capable of identifying local patterns that characterize a subset of the data. The literature is thus used to establish putative relationships among subsets of genes or proteins and to provide coherent justification for this clustering into subsets. We demonstrate the utility of the method by applying it to two independent and vastly different sets of genes. CONCLUSION: The presented method can create literature profiles from documents relevant to sets of genes. The representation of genes as additive linear combinations of semantic features allows for the exploration of functional associations as well as for clustering, suggesting a valuable methodology for the validation and interpretation of high-throughput experimental data

    Integrated analysis of gene expression by association rules discovery

    Get PDF
    BACKGROUND: Microarray technology is generating huge amounts of data about the expression level of thousands of genes, or even whole genomes, across different experimental conditions. To extract biological knowledge, and to fully understand such datasets, it is essential to include external biological information about genes and gene products to the analysis of expression data. However, most of the current approaches to analyze microarray datasets are mainly focused on the analysis of experimental data, and external biological information is incorporated as a posterior process. RESULTS: In this study we present a method for the integrative analysis of microarray data based on the Association Rules Discovery data mining technique. The approach integrates gene annotations and expression data to discover intrinsic associations among both data sources based on co-occurrence patterns. We applied the proposed methodology to the analysis of gene expression datasets in which genes were annotated with metabolic pathways, transcriptional regulators and Gene Ontology categories. Automatically extracted associations revealed significant relationships among these gene attributes and expression patterns, where many of them are clearly supported by recently reported work. CONCLUSION: The integration of external biological information and gene expression data can provide insights about the biological processes associated to gene expression programs. In this paper we show that the proposed methodology is able to integrate multiple gene annotations and expression data in the same analytic framework and extract meaningful associations among heterogeneous sources of data. An implementation of the method is included in the Engene software package

    Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Get PDF
    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches

    Organising multi-dimensional biological image information: The BioImage Database

    Get PDF
    Nowadays it is possible to unravel complex information at all levels of cellular organization by obtaining multi-dimensional image information. at the macromolecular level, three-dimensional (3D) electron microscopy, together with other techniques, is able to reach resolutions at the nanometer or subnanometer level. The information is delivered in the form of 3D volumes containing samples of a given function, for example, the electron density distribution within a given macromolecule. The same situation happens at the cellular level with the new forms of light microscopy, particularly confocal microscopy, all of which produce biological 3D volume information. Furthermore, it is possible to record sequences of images over time (videos), as well as sequences of volumes, bringing key information on the dynamics of living biological systems. It is in this context that work on bioimage started two years ago, and that its first version is now presented here. In essence, Bioimage is a database specifically designed to contain multi-dimensional images, perform queries and interactively work with the resulting multi-dimensional information on the World Wide Web, as well as accomplish the required cross-database links. Two sister home pages of bioimage can be accessed at http://www.bioimage.org and http://www-embl.bioimage.or

    bioNMF: a versatile tool for non-negative matrix factorization in biology

    Get PDF
    BACKGROUND: In the Bioinformatics field, a great deal of interest has been given to Non-negative matrix factorization technique (NMF), due to its capability of providing new insights and relevant information about the complex latent relationships in experimental data sets. This method, and some of its variants, has been successfully applied to gene expression, sequence analysis, functional characterization of genes and text mining. Even if the interest on this technique by the bioinformatics community has been increased during the last few years, there are not many available simple standalone tools to specifically perform these types of data analysis in an integrated environment. RESULTS: In this work we propose a versatile and user-friendly tool that implements the NMF methodology in different analysis contexts to support some of the most important reported applications of this new methodology. This includes clustering and biclustering gene expression data, protein sequence analysis, text mining of biomedical literature and sample classification using gene expression. The tool, which is named bioNMF, also contains a user-friendly graphical interface to explore results in an interactive manner and facilitate in this way the exploratory data analysis process. CONCLUSION: bioNMF is a standalone versatile application which does not require any special installation or libraries. It can be used for most of the multiple applications proposed in the bioinformatics field or to support new research using this method. This tool is publicly available at
    corecore